RSA experience

Bob wants to receive secret messages

Choose 2 prime numbers p1 and p2

p1 = 11

p2 = 13

Compute public n = p1*p2:

n = 143

Compute $\varphi(n) = (p1-1)^*(p2-1)$ and keep it private

 $\varphi(n) = 10*12 = 120$

Choose public encryption exponent e to be a random prime number less than φ that is also not a divisor of φ , but such that $k\varphi(n)+1$ is divisible by this number Non-divisors of φ : 1, 2, 3, 4, 5, 6, 7, 8, 9, ... Chosen public e = 7

Post n and e for everyone to use: n= 143, e = 7

Compute decryption exponent d= $(k\varphi(n)+1)/e$ (must be an integer) (1*120 + 1)/7 = 17.3 (2*120 + 1)/7 = 34.4 (3*120 + 1)/7 = 51.6 (4*120 + 1)/7 = 68.7 (5*120 + 1)/7 = 85.9 (6*120 + 1)/7 = **103**

d= (6*120 + 1)/7 = <u>103</u> d = 103

Alice wants to **send** secret messages

Get public values of n and e: n = 143, e = 7

Select a secret number to send to Bob (make it a small prime to be a coprime with n)): Alice wants to send number x= 19

Encrypt it using formula $x^e \mod n$, and e and n provided by Bob. She computes encrypted number $y = x^e \mod n = 19^7 \mod 143 = 46$ <u>https://www.mtholyoke.edu/courses/guenell/s2003/ma139/js/powermod.html</u>

Send y = 46

Bob receives secret messages

Receive y from Alice:

y = 46

Bob decrypts it using decryption exponent d:

 $x = y^d \mod n$

x = 46^103 mod 143 = 19